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A system of differential equations is given for heat and mass transfer, together 
with analytical relationships for the temperature, water content, drying rate, 
and heat-transfer rate for a packed layer moving in a slot channel. 

An immobile bed with conductive heat transfer from a hot surface is used to dry rmny 
labile, explosive, and readily oxidized powders and finely divided materials for which 
direct contact with a drying agent is impermissible. However, the method is extremely in- 
efficient, but a considerable acceleration can be attained by passing the material as a flow- 
ing layer over a heating surface [2]. Although this method is promising, no research on heat 
transfer in such layers has been done, and no mathematical description of the process has 
been published. Here we give a system of equations for the drying in such a moving layer, 
together with the solution for the particular case of a slot channel with unsymmetrical bound- 
ary conditions that reflects the actual setting in drying systems fairly closely. 

We use the major concepts due to Lykov for drying in porous bodies [3]; as in [3-.7], we 
assume a homogeneous model in which the moist granular material is considered as a cor~tinuous 
medium with effective transfer coefficients. The temperatures of all components (particles, 
liquid, and vapor) are considered as identical. It has been shown [i] that one is ju~:tified 
in using such a model for such a bed over a fairly wide range in the parameters. The follow- 
ing assumptions are made in deriving the equations: i) The bed is in stable motion and moves 
as a rod; 2) the effective physical characteristics and the phase-transition criterio~ are 
constant; 3) the transfer of heat and mass by conduction along the flow is negligible in com- 
parison with the convective component; 4) the mass transfer due to vapor infiltration is 
negligible, while the effects of the vapor infiltration on the heat transfer are incorporated 
into the effective thermal conductivity. 

The system of differential equations then takes the dimensionless form 

c?T (Y, X) 02T (r, X) O0 (Y, X) 
- -  e K o  ; 

OX dY z OX 

O0 (Y, X) : Ly 0~'@ (Y' X) Ly Pn 020 (F, X) 
OX OY a OY 2 

(1) 

The equations for steady-state mass and heat transfer in a moving bed are similar to those 
for nonstationary conductive drying in an immobile bed [3, 7]; an analog of the Fourier 
criterion for the nonstationary case is the reduced channel length X = (I/Pe)-(x/D) in (i). 
System (i) was solved for a particular case to give the temperature and potential distribu- 
tions, together with the heat-transfer and drying rates in a dryer consisting of a system of 
slot channels in which heat is brought up to the moving bed from a surface, while the re- 
sulting vapor is lost through slots. 

The formation is as follows. The channel (Fig. i) receives the moist material whose 
temperature to and water content uo are constant throughout the cross section. The material 
moves in the channel as a dense layer with a speed v constant throughout the section and 
length. The left-hand wall is J~permeable to water and vapor and supplies heat to the bed; 
this heat raises the temperature of the material, evaporates the water, and, in part, is 
lost via the right-hand permeable wall to the environment on account of convective heat and 
mass transfer. The process is described by (i) subject to the following boundary conditions: 
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Fig. 1 Fig. 2 

Fig. i. Drying in a moving bed with heat supplied from the 
surface: i) heating surface; 2) moist material; 3) free 
(permeable) surface 

Fig. 2. Distributions of temperature (1-5) and potential (6- 
i0) over the width of the channel: i, 6) X = 0.i; 2, 7) 0.2; 
3. 8) 0.4; 4, 9) 0.8; 5, I0) 1.6. 

at the inlet, 

T(Y, 0)----=0; O(Y, 0 ) = 0 ;  

at the heatlng surface (conditions of the second kind), 

aT(O,  X~ = - - K i q = : c o n s t ;  OO(0, X) Pn OT(O, X) 
OY c)Y OY 

at the free surface (conditions of the third kind), 

c)r ( l, X )  

OY 

= O; 

Biq [1 - -  T ( 1, X)]  - -  ( 1 - -  e) Ko L y  Bi m [ 1 - -  O (1, X)]  -= O, 

0@(1, X )  + p n  O T ( 1 ,  X )  
OY OY 

§  X)I = 0. 

(2)  

(3) 

(4) 

The steady-state problem for a moving bed described by (I) with boundary conditions (2)- 
(4) is similar to the nonstationary problem for an immobile bed of [7].* The distributions 
of the temperature and potential in the moving bed are described by the following expres- 
sions, which are analogous to those of [7]: 

. . . .  (-- ~,;A) >.~, T ( Y ,  X) 1 q- Kiq 1 q- Biq n=l 

• [ ( ~  - -  1) b2 ( ~ )  cos ( v l ~ Y )  - -  (v~ - -  1) bl (~,,) cos (v2~,,Y)]; (5)  

O (Y, X) = 1 - -  Pn Kiq (1 - -  Y) § Pn ~ A,~ exp ( - -  p]X) • 
t $ ~  1 

• [b~ ( ~ )  cos (vl~,~Y) - -  b~ ( ~ )  cos (v2pnY)]. (6) 

The t e m p e r a t u r e  and p o t e n t i a l  a v e r a g e d  o v e r  the  c r o s s  s e c t i o n  a r e  
oo 

X [ ( '~ - - - l )  ba(~n) sin(vl~n) (v~ 1) bl(/ln) sin('2lLtn) ] 
-- ; (7) 

V l ~ t  a V 2 ~ n  

*The n o n s t a t i o n a r y  u n s y m m e t r i c a l  c a s e  has  p r e v i o u s l y  been  s o l v e d  [4 ,  5] w i t h o u t  a l l o w a n c e  
f o r  t h e  mass t r a n s f e r  a r i s l n g  f rom t h e  p o t e n t i a l  g r a d i e n t .  
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O(x) = ~ +  
Pn Kiq 

~-Pn E 
n =  1 

A,~ exp (--~t~X) x 

• [bz(l.t,~ ) sin(v,lx,~)v~, b*(v'~) sin(vda'~) l ' v z / ~ n  

The rates of change of the mean temperature and potential over the reduced length are 

( 8 )  

OT X A'da~exp(--lx~X)[ (w;-l)bi(~n) sin(waD") (v~_l)bl(F~) sin(%D~) ] 
OX vl~ ~ wzl, ~ 

t l =  1 

OX va~,~ vz~,~ 
t Z ~ I  

Then in (5)-(10) we have 

(9) 

(io) 

v~=0,5 l + a K o P n +  Ly Ly 

( ' + C (  '>' '1)- w~=0,5 l + e K o P n +  Ly ; Ly ly ' 

2 //_K_k 
A,~ = .-;T [b2 (~,~) c 2 - -  b, (~ . )  cd + 

-k, 1 - - ( l - - e )  KoLy ~ bl0*.)q- v 2 -  Pn aa(l*.) ba(~n) • 

X {b~ ([x,~) czd I (Hn) --  b~ (~t,) c~d z (,an)}-i; 

at(F,,)= [1 @ (I--v~) 1--$ Ly Bim ] COS(Vl[tn) Wl~ Siri(Valll,~); 
e Biq Biq 

az(la,~ ) [ l + ( l - - v ~ )  l - -eLy Bim ] = - -  cos ( v ~ . )  v=>. sin (w2>.); 
e Biq Biq 

b i ( ~ , j  = cos  (Vl~,J  ~"  
I.y Bi~v x 

b 2 (~ , J  - cos  (v~,~)  . . . . . . . .  ~'.~ 
hy Bim% 

c l=(v~__ l ) (  1 1 ) KoPn 
Biq I.y Bi,~ Biq 

c i=(v~_ i) ( 1 I ) KoPn 
�9 Biq [y Bi m Biq 

d a Ga,,) = 1 + sin (v,~t.) cos (vl/~,~); 
v a ~  n 

sin (%;%) cos (vr 
W2~n 

, q O , , )  = t + 

sin (v~); 

sin (v29,~); 

Here N n are the roots of the characteristic equaaion f@n) = 0, where 

f (~,,) = ( 1 -- v~) a~ O-n) b~ (~) --  (1 --  ~) ~ (~,) b~ (~n). 
Equations (5)-(10) allow one to evaluate the effects of the main factors on the tempera- 

ture and potential distribution: bed speed, physical characteristics, channel geometry~ trans- 
fer conditions, temperature and water content at the inlet, and phase-transition criterion. 
We see from (5)-(8) that the dimensionless local and mean temperatures and potentials in- 
crease from zero to their maximum value at X = Xst , beyond which the infinite sum can be 
neglected. Past this point, the temperature and potential are almost independent of the 
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reduced length :(and also of the bed speed), and a self-modeling situation occurs. 
(5)-(8) take the following form for the reglon X > Xst: 

,T= l + I~iq :( 1 ~  ----:1 y )  ; 
�9 ' 'Bi~ 

,O = 1 + PnKiq(l--Y); 

' Biq 

Omax :: 1 + _Pn Kiq_ 
2 

Equations 

('5.a,) 

(6a) 

(7a} 

(Sa) 

The temperature and potential have linear distributions in this range; the bed acts as a 
planar wall and all the heat given out by the hot surface passes through the bed into the 
environment. The mean bed temperature isdependent on the heat-supply conditions, the heat 
transfer to the environment, and the thermophysical characteristics, while the mass-transfer 
characteristics have no effect, as (7a) shows. The maximum value for the mean potential 
(and, therefore, the minimal water content) is determined by the heat-supply conditions 6and, 
therefore, the temperature of the bed) and by the mass-transfer characteristics, as 68) shows. 
No drying occurs in this region, and the bed acquires an equilibrium water contentcorrespond- 
ing to the temperatu_re (this may be less than the water content uf corresponding to the en- 

vironment, and then 0 > i). 

The rates of change of the dimensionless temperature and potential decrease as the re- 
duced length increases, and they tend to zero in the self-modeling region, as (9) and (i0) 
show. Increase in the bed speed (Peclet number)causes the potential and water content to 
vary less rapidly over the length, but the total water loss increases on account of the in- 
creased flow of material. 

From (I0) we obtain the drying rate in the moving bed: 

O-u (u~ Pn V - -  A O 

Or D 2 
n = l  

X [ b2(.,~) sin(vlP')vlP~ --OI(P~) sin(.~pn)v2.,~ ] "  ( l l )  

We see from (ii) that the drying rate is dependent on the reduced length of the Channel and 
on the mass-transfer characteristics of the material; it decreases monotonically along the 
channel, but the more slowly, the higher the speed. The drying rate increaseswith the speed 
under otherwise equal conditions. We see from (ll) that there is no region of constant dry- 
ing rate in a moving bed. A simple exponential law applies for the drying rate if the 
reduced length is sufficiently large, and one need take only the first term in (ii). The 

drying rate tends to zero as X § O. 

The known temperature distribution gives us an expression for the heat-transfer rate at 

the heating surface: 

Nu = Kiq/(T w - -  T). (12) 
Here the local heat-transfer coefficient has been referred to the difference between the wall 
temperature and the mean bed 'temperature at that point. The contact resistance at the wall 
has been taken as negligible, i.e., the temperature of the bed at y = 0 is taken as equal to 
the wall temperature. The justification for neglecting the thermal resistancefor a moving 
bed has been discussed previously [i].* Substitution from (5) and (7) into (12) gives 

Nu--=Kiq { Kiq --E 
2 n= I 

A,~ exp (.p~X)[(v~ -- 1) b 2 (~,0 -- 

*It has been shown [i] that the contact resistance becomes negligibly small in comparison 
with the heat-transfer resistance in the:bed at a sufficient ~i~tance from the inlet section. 
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Variation in mean temperature (i), potential (2), and heat- 
transfer rate (3) with the reduced length. 

Fig. 4. Variation in heat-transfer rate along the channel: i) Pe = 
!00; 2) 50; 3) 25; 4) I0. 

[ (v~ 1) b I (,tt~)] ~- ~ A n exp ( - -  "X - -  - -  rt;, ) ( v g - -  1 ) b z ( ~ ) x  

SiI1 (Va/'I 1') I I  . • (v, 2 I) b 1 (g,,) sin (v2~) - '  (13)  
Vl~ n V2~ 

The hea t - t ransfe r  ra te  for a moving bed i s  dependent on the speed, the thermophysical char- 
a c t e r i s t i c s ,  and the mass-transfer characteristics, as well as the channel size and t~e phase- 
transition criterion. The Nusselt number decreases as the reduced length increases for the 
initial part of a channel, but at X > Xst it reaches its lower limit, after which the infi- 
nite sum in (13) becomes negligible. 

Consequently, heat transfer complicated by mass transfer also shows thermal stabJ!iza- 
tion over the initial section. The rate of change in the Nusselt number is dependent on 
the quantities that characterize the mass transfer (Lu, Pn, Ko, e) under otherwise equal 
conditions. In the stabilized region (for X > Xst) we obtain that (!3) becomes 

Numin=  2 = const, (14) 

~rnin= 2~H/D. (15) 

In this region, the heat transfer is determined only by the thermal resistance arising from 
the thermal conductivity of the bed in the channel; the speed and the mass-transfer char- 
acteristics have no effect. 

The effects of the major factors on the coupled heat and mass transfer in drying in a 
moving bed have been examined by computation with a BESM-4 computer for widely varying condi- 
tions. Figures 2-4 show calculations for the following values of the parameters: i0 < Pe < 
I00; 0 < x/D < 50; 0 < X < 4; Ki = 0.9; Bi = 5; Bi = i; Ly = 0.4; Pn = 0.6; Ko = 5~ and-- 

. . . .  q q m 
c = 0.4. If X > 0.8, the temperature and potential have linear distributions over the cross 
section. Essentially constant mean temperature and potential occur for X > 1.8. Thermal 
stabilization occurs within about the same reduced length (Fig. 3). Therefore, the tharmal 
stabilization length is given approximately by the following for these conditions: 

)(st __~_ 1.8; (l/D)s t ~" 1.8 Pe. (16) 

NOTATION 

aq, effective thermal diffusivity; am, diffusion coefficient in bed; Cq, specific heat 

of material; Cm, specific isothermal mass capacity; D, bed thickness; qw' heat-flux density 

at heated wall; t, temperature; l, thermal-stabilization length; u = c 0, moisture con=ent; 
m 

x, y, longitudinal and transferse coordinates; r, latent heat of evaporation; v, bed w~locity; 
~, heat-transfer coefficient; B, mass-transfer coefficient; 6, thermal-gradient coefficient; 
6, moisture-transfer potential; Xq, effective thermal conductivity; Am, mass conductivity; 
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= ~fD/%q; ~ 8D/%m, = T, time; Biq Bi m Biot number; ~, phase-transition criterion; Kiq qwD/ 

%q(tO -- tf), Kirpichev number; Ko = rCm(@O -- ef)/Cq(tf -- to), Kossovich number; Ly = am/aq, 

Lykov number; Nu = ~D/Xq, Nusselt number; Pe = vD/aq, Peclet number; Pn = ~(tf -- to)/Cm(@O -- 

Of), Posnov number; T = (to -- t)/(to -- tf), temperature; X = (I/Pe).(x/D), reduced length; 

Y = y/d, coordinate; @* = (0o -- @)/(@o -- Of), moisture-transfer potential. Indices: 0, inlet 

cross section; st, stabilization; f, medium around free bed surface; m, mass transfer; q, 
thermal; w, at heating-plate surface. 
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